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Abstract

This paper deals with the construction of high-order ADER numerical schemes for solving the one-dimensional shallow
water equations with variable bed elevation. The non-linear version of the schemes is based on ENO reconstructions. The
governing equations are expressed in terms of total water height, instead of total water depth, and discharge. The ENO
polynomial interpolation procedure is also applied to represent the variable bottom elevation. ADER schemes of up to
fifth order of accuracy in space and time for the advection and source terms are implemented and systematically assessed,
with particular attention to their convergence rates. Non-oscillatory results are obtained for discontinuous solutions both
for the steady and unsteady cases. The resulting schemes can be applied to solve realistic problems characterized by non-
uniform bottom geometries.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There is a wide range of physical situations, such as flows in open channels and rivers, that can be math-
ematically represented by first-order non-linear systems of partial differential equations, whose derivation
involves an assumption of the shallow water type. With rare exceptions, the governing equations are hyper-
bolic. The loss of hyperbolicity may occur in models of the multi-layer type, for which the equations are of
mixed elliptic–hyperbolic type. Hyperbolicity and non-linearity mean that even for smooth initial conditions
the solution may exhibit shock waves, or bores. Godunov-type methods, first developed in the aerospace
industry to solve the compressible Euler equations, have steadily been exported to other application areas,
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including shallow water type flows. Early works in this direction are, for example, [25,26,10,1,11,8,9]. An
informative paper is [34], in which a large number of numerical methods for the one-dimensional shallow
water equations are implemented and assessed. Further information on Godunov schemes for the shallow
water equations is found in the textbook [27] and references therein.

Realistic shallow water type models will include source terms, that is, non-differential terms that are func-
tions of the vector of unknowns. For sometime it has been accepted that the discretization of source terms can
be as challenging as for the non-linear advection terms. It must be said that for most cases, even naive discret-
izations for source terms work reasonably well, but there are some well documented situations in which only
sophisticated schemes can perform adequately. When solving real problems one is likely to encounter all sorts
of situations, with a high probability that naive schemes will compromise the quality and reliability of the
solution.

Difficulties in discretizing source terms are present at the first-order level. A separate issue is that of con-
structing schemes of higher order of accuracy. In view of Godunov’s theorem [12], this is difficult even for
equations without source terms, and schemes of second or higher order must necessarily be non-linear to avoid
the production of unphysical oscillations in the vicinity of large spatial gradients. There are currently good
second-order schemes for the shallow water equations, although it is sometimes difficult to ascertain whether
the second order of accuracy is valid for all the terms involved or not.

In this paper, we study numerical methods that address these two difficulties, namely (i) source terms and
(ii) high order of accuracy. There have been some works in this direction. For example, ENO and WENO
methods have already been applied to the shallow water equations; see for instance [3].

Here we are concerned with ADER type schemes. These methods of arbitrary accuracy were first intro-
duced in [28] for linear problems in one and multiple space dimensions and then further developed for
non-linear problems in, for example, [22,29,30,24]. Further developments of ADER schemes are also reported
in [21,18,19,17,14–16,6,4].

The ADER methodology is a Godunov-type approach in which the numerical flux uses the solution of the
so-called derivative Riemann problem (DRP) [29,31]. In this type of Riemann problems the initial conditions
consist of two variable vectors either side of the initial discontinuity, instead of two constant vectors, as in the
classical Godunov method. In the solution of the intercell DRP to compute the numerical flux, the influence of
the source term is included, that is, the numerical flux knows of the source term. Then the numerical source
term is computed from a volume integral evaluated on high-order solutions in space and time, within the
space–time volume. In this manner ADER schemes of arbitrary order of accuracy for the coupled non-linear
advection and source terms can be constructed. Preliminary results on the ADER method for the shallow
water equations are presented in [23,30].

In this paper, we report on ADER schemes based on ENO non-linear reconstructions for the shallow water
equations with source terms due to bottom variation. The objective is to construct high-order, well-balanced
non-oscillatory schemes. Well-balanced schemes are constructed using (i) a suitable formulation of the govern-
ing equations and (ii) a staggered grid. The free surface elevation and water discharge are defined at the centre
of the volume, while the bottom elevation is defined at the volume interfaces. The source term and the numer-
ical fluxes are then evaluated using the solution of the derivative Riemann problem [29,31]. The resulting
ADER schemes are of arbitrary order of accuracy and are applicable to smooth and discontinuous solutions,
both steady and unsteady.

The rest of the paper is as follows. Section 2 is about the governing equations and its reformulation. Section
3 describes the numerical methods of this paper. Numerical results are presented in Section 4. In Section 5, we
carry out a systematic convergence rate study of the numerical algorithms proposed. A summary and conclud-
ing remarks are found in Section 6. Appendix that illustrates the Cauchy–Kowalewski procedure for the equa-
tions of interest here.

2. Formulation of the problem

The shallow water equations can be written in conservative form for the simple case of an horizontal bed
channel and vanishing bottom friction in terms of the water depth D and water discharge Q in the following
form [32,10]:



Fig. 1. Formulation of the problem, data reconstruction (left), control volume and derivative Riemann problem (right).
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where bðxÞ is the bottom elevation, t and x are the temporal and spatial independent variables, respectively,
and g is the acceleration due to gravity. See Fig. 1, where a longitudinal profile representing a couple of com-
putational cells is depicted.

It is known that when the equations include source terms standard numerical schemes applied to (1) do not
perform satisfactorily, particularly for the steady-state case. This is because only the relative position between
the free surface and the bed profile is known and the information regarding the absolute position of the free
surface (or of the bed) is lost. There are two physical situations of interest here; one in which the particle veloc-
ity is zero, which we call stationary flow, and one in which temporal partial derivatives in (1) are identically
zero, steady flow. We note that standard explicit schemes for the shallow water with source terms, if conver-
gent, converge very slowly to the correct steady-state solution, and consequently, very fine meshes are required
for obtaining satisfactory results.

To design a numerical method capable of reproducing both steady and unsteady solutions we follow the
formulation of the equations reported in [33], using the free surface elevation H ¼ Dþ b as an unknown, with
which (1) becomes
oH
ot þ

oQ
ox ¼ 0;

oQ
ot þ o

ox
Q2

H�bþ 1
2
gH 2 � gbH

� �
¼ �gH ob

ox :

8<: ð2Þ
System (2) is hyperbolic with eigenvalues kðiÞ and right eigenvectors RðiÞ:
kð1Þ ¼ u� a; kð2Þ ¼ uþ a; Rð1Þ ¼
1

u� a

� �
; Rð2Þ ¼

1

uþ a

� �
;

where u ¼ Q=D is the flow velocity and a ¼
ffiffiffiffiffiffi
gD
p

is the celerity.
The two main advantages of formulation (2) are that the model reproduces in the correct manner the phys-

ics of the problem, and it allows us to use existing Riemann solvers, such as the exact Riemann solver in [27],
for the evaluation of the numerical fluxes between neighbouring computational volumes.
3. Numerical scheme

System (2) can be written in the following conservative form:
oU

ot
þ oF

ox
¼ S; ð3Þ
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where the unknown vector U, the flux vector F and the source term S are given by
U ¼
H

Q

� �
; F ¼

Q
Q2

H�bþ 1
2
gH 2 � gHb

 !
; S ¼

0

�gH ob
ox

 !
:

Integration of (3) over the control volume I i ¼ ½xi�1
2
; xiþ1

2
� � ½tn; tnþ1� on the x–t plane gives
Unþ1
i ¼ Un

i �
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2
� Fi�1

2

� �
þ DtSi: ð4Þ
Here Un
i is the cell average of the solution at time level tn, Fiþ1

2
is the time average of the flux at cell interface xiþ1

2

and Si is the time–space average of the source term over the control volume, namely
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To construct a numerical method for the solution of (3) we need to define suitable approximations to Fiþ1
2

and
to Si, preserving the same notation, which are then called the numerical flux and the numerical source, respec-
tively. We use the cell centred approach for the unknown vector U, while for the bottom elevation, which ap-
pears in the formulation for the fluxes Fiþ1

2
and for the source terms Si, we use an interface-centred approach;

the averaged values biþ1
2

are defined asZ

biþ1

2
¼ 1

Dx

xiþ1

xi

b xð Þdx: ð6Þ
To develop high-order numerical schemes we use the ADER approach for the evaluation of the numerical
fluxes and of the numerical source. The ADER approach consists of three steps: (i) reconstruction of high-de-
gree polynomials starting from the cell average values of the solution; (ii) solution of the derivative Riemann
problem and evaluation of the intercell flux Fiþ1

2
; (iii) evaluation of the numerical source Si by a high-order

computation of the space–time integral inside the control volume.
Pointwise values of the solution at time level tn are found from the reconstructed high-degree polynomials.

In this paper we use the ENO [13,20] reconstruction procedure to avoid spurious oscillations, leading to a non-
linear numerical scheme. We note that the reconstruction is performed both for the unknown vector U and for
the bottom elevation b (only once), as depicted in Fig. 1.

After the data reconstruction procedure we solve the following derivative Riemann problem (DRP):
otUþ oxFðUÞ ¼ SðUÞ;

Uðx; 0Þ ¼
piðxÞ; x < xiþ1

2
;

piþ1ðxÞ; x > xiþ1
2

(
ð7Þ
to find the solution at x ¼ xiþ1
2
, denoted by Uiþ1

2
ðsÞ, where piðxÞ denotes the vector of reconstructed polynomials

in ith cell. Note that the value biþ1
2

as well as its spatial derivatives are known. Following [29,31] we find the
approximate flux at cell interface using an appropriate Gaussian rule:
Fiþ1
2
¼
XN

a¼0

F Uiþ1
2

caDtð Þ
� �

Ka; ð8Þ
where ca are suitable Gaussian coefficients, and Ka are Gaussian weights. The solution Uiþ1
2
ðsÞ of the DRP

problem (7) is found by first expressing it as a Taylor series expansion:
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where 0þ ¼ limt!0þ t. The leading term Uðxiþ1
2
; 0þÞ is found by solving the classical homogeneous Riemann

problem with piecewise constant data:
otUþ oxF Uð Þ ¼ 0; Uðx; 0Þ ¼
pi xiþ1

2

� �
; x < xiþ1

2
;

piþ1 xiþ1
2

� �
; x > xiþ1

2

8><>: ð10Þ
and evaluating its solution at ðx� xiþ1
2
Þ=t ¼ 0 to obtain Uðxiþ1

2
; 0þÞ, the so-called Godunov state, which in this

paper is evaluated using the exact Riemann solver [27]. The remaining terms in (9) are computed by replacing
all time derivatives oðkÞt Uðxiþ1

2
; 0þÞ by functions of spatial derivatives oðlÞx Uðxiþ1

2
; 0þÞ using the Cauchy–Kowa-

lewski procedure, reported in Eqs. (21)–(23). Now the problem of computing time derivatives is replaced
by that of determining spatial derivatives of the conservative variables H and Q.

The unknown spatial derivatives at t ¼ 0þ are found from the following linearized Riemann problems:
ot oðkÞx U
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2
;
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2

� �
; x > xiþ1

2
;

8><>:
ð11Þ
where AðUÞ is the Jacobian of the system and is given in the Appendix and the symbol dðkÞ denotes the kth
derivative with respect to the spatial variable x. The boundary extrapolated values are found using the poly-
nomials piðxÞ, piþ1ðxÞ obtained by the ENO reconstruction procedure.

The first component of the source term (i.e. the source for the continuity equation) is equal to zero. To eval-
uate the second component of the source term we first perform integration by parts:
S
ð2Þ
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The first part is evaluated using suitable Gaussian points and a Taylor time expansion for the evaluation of
Hðxi�1

2
; tÞ. The second integral in (12) is approximated by a Gaussian integration rule:
g
DxDt

Z Dt

0

Z x
iþ1

2

x
i�1

2

b
oH
ox

dxdt ¼ g
XN

a¼1
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o

ox
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" #
Ka: ð13Þ
We note that the evaluation of (13) is not necessary for the first-order version of the scheme. Integral (13) must
be evaluated by splitting the space integral in two parts: xi�1

2
� xi and xi � xiþ1

2
, because the representation of

the bed elevation bðxÞ is given by an interface-centred approach and consequently, two different reconstructed
polynomials for bðxÞ are present in cell i.

3.1. Conservative property and source terms

It is obvious that the governing equations contain non-vanishing terms also in the case of steady flow.
Under stationary conditions in the momentum equation, both the source term due to the bottom elevation
�gH ob

ox and the flux term due to hydrostatic pressure 1
2
gH 2 � gHb are different from zero and the former bal-

ances the divergence of the latter.
A numerical method capable of reproducing the exact solution under steady conditions is said to satisfy

the C-property; the method is said to satisfy the approximate C-property if it is accurate up to the pre-
scribed order when applied to a steady problem [32]. The stationary solution, characterized by vanishing
velocities everywhere in the domain, is a subset of the steady solutions. If the numerical scheme repro-
duces the exact solution in this case (water free surface at rest, i.e. H ¼ constant, Q ¼ u ¼ 0) it is said
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to satisfy the Z-property. The scheme proposed in this paper satisfies the Z-property and the approximate
C-property.

We note that when H ¼ H 0 ¼ constant, Q ¼ 0 and u ¼ 0 in the whole domain, the reconstructed values
piðxÞ and piþ1ðxÞ are equal to H ¼ H 0, Q ¼ 0 at all the interfaces between numerical cells. Moreover, recon-
structed values for all the spatial derivatives of H and Q are equal to zero. We can now compute the numerical
fluxes, following the situation depicted in Fig. 1:
Fig. 2.
u ¼ 0 m
Fi�1
2
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0
1
2
gH 2
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2
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2
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2

 !
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The source term is then evaluated using integration by parts, and recalling that the spatial derivative of the
reconstructed variable H is zero:
S
ð2Þ
i ¼ �

g
DxDt

Z tnþDt
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Z x
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2
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2

H
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2
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2

� �
dt ¼ g bH jx�1

2
� bH jxþ1

2

� �
: ð14Þ
Applying scheme (4) it is easy to show that the numerical scheme reproduces the exact solution. The numerical
results shown in Fig. 2 verify the stated property of the scheme.

4. Numerical solutions

The numerical method is tested to verify that both steady and unsteady solutions are well reproduced. The
latter case is traditionally associated with dam-break problems, characterized by the propagation of sharp
fronts. In the former case both smooth and discontinuous solutions can be observed. Results reported in this
paper are computed using Courant number CFL ¼ 0:9, moreover, steady solutions have been obtained by
marching in time to steady state, starting from an initial profile (horizontal free surface profile) that is far away
from the steady solution.

4.1. Steady solutions

For the test under steady conditions there are several different configurations characterized by smooth or
discontinuous solutions, depending on the values of the water discharge Q, the maximum height of the bed
0 2 4 6 8 10
x [m]
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0.2

0.4
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1

b,
 h

 [
m

] Bottom profile
Free surface

Computed stationary state solution for the flow over a non horizontal bed with initial condition equal to H ¼ 1 m, Q ¼ 0 m2 s�1,
=s, L ¼ 10 m and bðxÞ ¼ bmax � exp½� ðx�L=2Þ2

ðL=2Þ2 �, bmax ¼ 0:2 m, CFL ¼ 0:9.



G. Vignoli et al. / Journal of Computational Physics 227 (2008) 2463–2480 2469
profile bmax and the boundary conditions for the free surface elevation Hðx ¼ 0Þ and Hðx ¼ LÞ, where L is the
channel length. Figs. 3 and 4 show the numerical results for free surface elevation and water discharge, respec-
tively, obtained with a fifth-order ADER method, for the standard test case of subcritical flow over a para-
bolic bump. This solution is computed choosing a maximum bed elevation such that the flow remains
subcritical in the domain and the solution does not exhibit discontinuities. This is the case of the flow field
in large rivers, where the irregular geometry produces small flow disturbances. The numerical method is able
0 2 4 6 8 10
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0.8

1

h[
m
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 b

[m
]

analytical solution
bottom profile
numerical solution

Fig. 3. Steady case: free surface elevation in the case of smooth solution and parabolic bed profile
bðxÞ ¼ maxð0;�16bmax=L2ðx2 � LxÞ � 3bmaxÞ. ADER (fifth order) numerical method used. (Q ¼ 1 m2 s�1, bmax ¼ 0:3 m, Hðx ¼ LÞ ¼ 1 m,
N ¼ 50, L ¼ 10 m, CFL ¼ 0:9.)
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Fig. 4. Steady case: water discharge in the case of smooth solution and parabolic bed profile bðxÞ ¼ maxð0;�16bmax=L2ðx2 � LxÞ � 3bmaxÞ.
ADER (fifth order) numerical method used. (Q ¼ 1 m2 s�1, bmax ¼ 0:3 m, Hðx ¼ LÞ ¼ 1 m, N ¼ 50, L ¼ 10 m, CFL ¼ 0:9.)
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to compute very accurately the local flow acceleration and the perturbation of the free surface elevation. How-
ever, as seen in Fig. 4, the computed discharge exhibits small but visible errors.

For larger values of the elevation of the bump the free surface profile becomes steeper and steeper until it
becomes discontinuous. This is the case shown in Figs. 5 and 6, where the maximum bottom elevation is 0:5 m.
The numerical solution of Figs. 5 and 6 agrees with the exact solution both for the free surface elevation and
the water discharge.

We remark that for the case of steady and discontinuous solutions, the position of the shock is stationary
and depends on the water discharge, the maximum bottom elevation and the boundary conditions. It is pos-
sible to obtain a more accurate numerical solution (as plotted in the upper part of Fig. 5) if the mesh is chosen
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Fig. 5. Steady case: free surface elevation in the case of discontinuous solution and parabolic bed profile
bðxÞ ¼ maxð0;�16bmax=L2ðx2 � LxÞ � 3bmaxÞ. ADER (fifth order) numerical method used. (Q ¼ 1 m2 s�1, bmax ¼ 0:5 m, Hðx ¼ LÞ ¼ 1 m,
top N ¼ 280, bottom N ¼ 285, L ¼ 10 m, CFL ¼ 0:9.)
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Fig. 6. Steady case: water discharge in the case of discontinuous solution and parabolic bed profile
bðxÞ ¼ maxð0;�16bmax=L2ðx2 � LxÞ � 3bmaxÞ with two meshes N ¼ 280 and N ¼ 285. ADER (fifth order) numerical method used.
(Q ¼ 1 m2 s�1, bmax ¼ 0:5 m, Hðx ¼ LÞ ¼ 1 m, L ¼ 10 m, CFL ¼ 0:9.)
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in such a way that the shock is positioned precisely at the interface between two adjacent cells, in this case
N ¼ 280. Note that this procedure is not general because the position of the shock is not known a priori.
In other words, for the steady shock solution refinement of the mesh does not always give more accurate
results for the shock, as can be seen from Figs. 5 and 6.

4.2. Unsteady solutions

Unsteady solutions are the typical case for which in the past shock capturing numerical method have been
constructed. In natural rivers and channels unsteady solutions with a low degree of temporal variability, like
flood waves, are due to rainfall events. Rapid phenomena characterized by the formation of sharp fronts and
bores are typically related to the presence of artificial structures. Finally, sharp fronts and bores may occur in
natural convergent estuaries during the propagation of tidal waves.

4.2.1. Comparison with the exact unsteady Riemann problem solution

Test cases under unsteady conditions are typically dam-break problems. For this kind of problems the ana-
lytical solution is available both for the case of horizontal bed profile and for the case of a step-like bottom.
The first case has not been considered because for such case our formulation reduces to the standard shallow
water formulation. Instead we consider a dam-break test problem over a step-like bottom profile for which the
exact solution is available [2]. The test considered has solution characterized by a right-facing shock, a station-
ary shock and a left-running rarefaction. Fig. 7 shows a comparison between the numerical solution obtained
using an ADER (third order) scheme and the exact solution.

Note that in the staggered grid setup of Fig. 1, in the initial condition for the numerical solution the dis-
continuity for the free surface elevation and for the bottom profile are staggered by half a computational cell.
To perform the comparison between numerical and analytical solutions we have used 500 computational cells,
such that the space interval between the two discontinuities in the initial condition is sufficiently small. Good
agreement is observed, results are essentially non-oscillatory for both shocks. The stationary shock in x ¼ 0 m
is reproduced with a small error for the water discharge. As for the stationary test case, this error is due to the
position of the numerical cell interface.



0 5 10 15
0

0.5

1

1.5

2

h[
m

],
 b

[m
]

numerical solution
analytical solution
bottom profile

0 5 10 15
x[m]

0

0.5

1

1.5

2

Q
[m

2/
s]

bottom profile
analytical solution
numerical solution

Fig. 7. Comparison between numerical and analytical solutions for the dam-break problem with a bottom step after T 0 ¼ 1:057 s. ADER
(third order) numerical method used. The initial conditions are HL ¼ 1:461837 m, HR ¼ 0:508732 m and QL ¼ QR ¼ 0 m2 s�1, the step in
the bottom profile is 0:2 m high and is positioned at x ¼ 8 m, CFL ¼ 0:9.
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4.2.2. Dam-break problem over a smooth bed

As a final example we show numerical results for a dam-break problem over a smooth bed profile. For this
case the analytical solution is not available.

Results are shown in Figs. 8 and 9 for the case of a Gaussian bed profile. Under these conditions the solu-
tion shows two shock waves. The right-facing shock is due to the initial conditions, while the left-facing shock
in the middle of the domain is due to the bottom slope and is quasi-stationary.

5. Convergence rates study

In the previous section we have applied our high-order numerical methods to some challenging problems,
including shocks, and have shown that the proposed high-order numerical algorithms reproduce well both
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Fig. 8. Solution for dam break over a non horizontal profile bðxÞ ¼ bmax exp½�ðx�150
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Fig. 9. Solution for dam break over a non horizontal profile bðxÞ ¼ bmax exp½�ðx�150
128
Þ2�, bmax ¼ 1:5 m. The initial conditions are HL ¼ 4 m,

HR ¼ 1 m and QL ¼ QR ¼ 0 m2 s�1. ADER (third order) numerical method used. The solution at time T 0 ¼ 40 s exhibits two shocks.
N ¼ 500 cells used, CFL ¼ 0:9.
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steady and unsteady solutions and the results are essentially non-oscillatory. In this section, we carry out a
systematic empirical study of the convergence rates of the schemes to verify that, for smooth solutions, the
algorithms are of the claimed theoretical order of accuracy. We do this for both the steady case and unsteady
case represented by a full non-linear system with source terms.

We have performed tests for schemes of expected order of accuracy in space and time from second to fifth;
for all tests we have used a Courant number coefficient CFL ¼ 0:9, a computational domain of length
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L ¼ 10 m, with two different bottom topographies, namely bed profiles bðxÞ described by a Gaussian function
and a sinusoidal function. At the outset one can say that results with the sinusoidal bed profile are expected to
be better than those obtained using a Gaussian bed profile. As pointed out by Shu [20], in studying conver-
gence rates, difficulties in achieving the expected convergence rates are observed when the involved functions
contain large derivatives.

For the tests with a sinusoidal bed profile the computed free surface elevation Hðx; tÞ is a sinusoidal func-
tion only if the amplitude of the bottom elevation is small enough. For higher values of the maximum bottom
elevation non-linearities in the governing equations give rise to the evolution of more complex free surface
profiles exhibiting steeper gradients of the solution Hðx; tÞ. For even larger values of the bottom elevation
we obtain the limiting case of discontinuous free surface profiles. We also note that for a sinusoidal free sur-
face elevation the second component of the flux is not sinusoidal. All of these considerations suggest that we
should test the accuracy of the scheme, both for the steady and the unsteady cases, using small values for the
sinusoidal amplitude of the bottom profile.

5.1. Steady case

The numerical scheme is first tested under steady conditions, to verify that it satisfies the approximate C-
property.

The empirical rate of convergence of the schemes is tested for a Gaussian and for a sinusoidal bed profile.
For the sinusoidal bed profile results are in agreement with the designed order of accuracy of the numerical
scheme (see Tables 1 and 2) where we show the result obtained using two different amplitudes for the bed sinu-
soidal profile, namely 0.001 m and 0.01 m. The expected orders of accuracy are reproduced reasonably for
schemes of up to fourth order of accuracy. The fifth-order scheme does not perform as expected, particularly
for the largest chosen value of the bottom elevation. As expected, for the Gaussian bed profile the attained
order of accuracy does not match the designed one, particularly for the fourth and fifth-order ADER schemes
(see Table 3). We note however, that, as expected, the fifth-order scheme is the most accurate in that its errors
are the smallest.
Table 1
Convergence rates study for the steady and smooth case, sinusoidal bed profile bðxÞ ¼ �bmax sinð2p=LxÞ and bmax ¼ 0:001 m, Q ¼ 1 m2 s�1,
Hðx ¼ LÞ ¼ 1 m, L ¼ 10 m, CFL ¼ 0:9

Method N L1 error L1 order L1 error L1 order

ADER 2 5 0.119E�03 0.252E�03
10 0.279E�04 2.09 0.610E�04 2.04
20 0.616E�05 2.18 0.131E�04 2.21
40 0.146E�06 2.07 0.297E�05 2.14
80 0.357E�06 2.03 0.697E�06 2.09

ADER 3 5 0.501E�04 0.111E�03
10 0.783E�05 2.67 0.150E�04 2.89
20 0.998E�06 2.97 0.201E�05 2.89
40 0.128E�06 2.96 0.257E�06 2.97
80 0.161E�07 2.98 0.323E�07 2.99

ADER 4 5 0.313E�04 0.703E�04
10 0.193E�05 4.02 0.451E�05 3.96
20 0.114E�05 4.08 0.261E�06 4.10
40 0.672E�08 4.08 0.150E�07 4.11
80 0.414E�09 4.02 0.101E�08 3.88

ADER 5 5 0.138E�04 0.322E�04
10 0.603E�06 4.51 0.118E�05 4.76
20 0.206E�07 4.87 0.408E�07 4.86
40 0.903E�09 4.51 0.142E�08 4.84
80 0.101E�09 3.15 0.185E�09 2.93



Table 2
Convergence rates study for the steady and smooth case, sinusoidal bed profile bðxÞ ¼ �bmax sinð2p=LxÞ and bmax ¼ 0:01 m, Q ¼ 1 m2 s�1,
Hðx ¼ LÞ ¼ 1 m, L ¼ 10 m, CFL ¼ 0:9

Method N L1 error L1 order L1 error L1 order

ADER 2 5 0.117E�02 0.248E�02
10 0.280E�03 2.06 0.606E�03 2.03
20 0.617E�04 2.18 0.136E�03 2.15
40 0.146E�04 2.07 0.309E�04 2.13
80 0.358E�05 2.03 0.729E�05 2.08

ADER 3 5 0.489E�03 0.111E�02
10 0.769E�04 2.66 0.148E�03 2.90
20 0.991E�05 2.95 0.200E�04 2.89
40 0.128E�05 2.94 0.256E�05 2.96
80 0.164E�06 2.96 0.323E�06 2.98

ADER 4 5 0.302E�03 0.685E�03
10 0.191E�04 3.98 0.440E�04 3.95
20 0.119E�05 4.00 0.292E�05 3.91
40 0.720E�07 4.05 0.223E�06 3.71
80 0.916E�08 2.97 0.262E�07 3.08

ADER 5 5 0.131E�03 0.307E�03
10 0.602E�05 4.44 0.114E�04 4.74
20 0.300E�06 4.32 0.510E�06 4.48
40 0.386E�07 2.95 0.725E�07 2.81
80 0.853E�08 2.18 0.169E�07 2.09
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5.2. Unsteady case

For the purpose of assessing the convergence rates of the proposed schemes we devise exact, smooth solu-
tions to non-linear inhomogeneous systems in the following manner. We prescribe distributions in space and
time for the functions Hðt; xÞ and Qðt; xÞ. These will be exact solutions of a modified inhomogeneous system, as
we shall see. Inserting these prescribed functions into system (2) produces a modified system with an additional
source term eSðx; tÞ due to the fact that Hðx; tÞ and Qðx; tÞ are not solutions to the original physical system (2)
but are exact solutions of the mathematical inhomogeneous system (15). The convergence rates study is per-
formed on the modified system.

The prescribed exact solution is
H ¼ H 0 þ a0 sin 2p
x
L

� �
cos 2p

t
T 0

� �
;

Q ¼ Q0 �
a0L
T 0

cos 2p
x
L

� �
sin 2p

t
T 0

� �

with the bottom elevation given by
b ¼ b0 sin 2p
x
L

� �
;

where L is the length of the computational domain and T 0 a suitable time period. The resulting artificial source
term is computed numerically in the same way as the physical source term. We remark that to use this ap-
proach for studying convergence rates one necessarily requires schemes that are able to solve systems with
source terms to the expected accuracy, even if the original purpose was to solve homogeneous problems to
high accuracy.

The modified equations reads
oH
ot þ

oQ
ox ¼ 0;

oQ
ot þ o

ox
Q2

H�bþ 1
2
gH 2 � gbH

� �
¼ �gH ob

ox þ eSðx; tÞ:
8<: ð15Þ



Table 3
Convergence rates study for the steady and smooth case, Gaussian bed profile bðxÞ ¼ bmax � exp½� ðx�L=2Þ2

ðL=2Þ2 � and bmax ¼ 0:001 m,
Q ¼ 1 m2 s�1, Hðx ¼ LÞ ¼ 1 m, L ¼ 10 m, CFL ¼ 0:9

Method N L1 error L1 order L1 error L1 order

ADER 2 5 0.357E�04 0.971E�04
10 0.117E�04 1.60 0.286E�04 1.76
20 0.304E�05 1.94 0.818E�05 1.80
40 0.760E�06 2.00 0.212E�05 1.94
80 0.189E�06 2.00 0.542E�06 1.96

ADER 3 5 0.249E�04 0.759E�04
10 0.386E�05 2.69 0.852E�05 3.15
20 0.550E�06 2.80 0.114E�05 2.89
40 0.764E�07 2.84 0.171E�06 2.74
80 0.104E�07 2.86 0.337E�07 2.34

ADER 4 5 0.160E�04 0.454E�04
10 0.196E�05 3.02 0.468E�05 3.27
20 0.307E�06 2.67 0.190E�05 1.30
40 0.447E�07 2.78 0.268E�06 2.82
80 0.512E�08 3.12 0.487E�07 2.46

ADER 5 5 0.131E�04 0.375E�04
10 0.894E�06 3.87 0.208E�05 4.16
20 0.423E�06 1.07 0.347E�05 �0.78
40 0.550E�07 2.94 0.687E�06 2.33
80 0.533E�08 3.36 0.108E�06 2.66
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The exact expression of the source term eSðx; tÞ is given by
eSðx; tÞ ¼ 4p
a0 sinðkxÞ sinðxtÞ Q0 � a0L

T 0
sinðxtÞ cosðkxÞ

� �
T 0 H 0 þ a0 cosðxtÞ sinðkxÞ � b0 sinðkxÞð Þ

�
2p a0

L cosðxtÞ cosðkxÞ � b0

L cosðkxÞ
	 


Q0 � a0L
T 0

sinðxtÞ cosðkxÞ
� �2

H 0 þ a0 cosðxtÞ sinðkxÞ � b0 sinðkxÞð Þ2
þ 2pg

a0

L
cosðxtÞ

� cosðkxÞ H 0 þ a0 cosðxtÞ sinðkxÞð Þ � 2pg
a0b0

L
cosðxtÞ cosðkxÞ sinðkxÞ � 2p

a0L

T 2
0

cosðxtÞ

� cosðkxÞ; ð16Þ
where k ¼ 2p
L and x ¼ 2p

T 0
.

As for the steady case we have performed numerical tests using sufficiently small values for the amplitudes
a0 and b0, such that the non linearities appearing in the equations (in particular in the expression for the
momentum flux) do not play a significant role. In Tables 4 and 5, we report the test case for a0 ¼ 0:001 m,
b0 ¼ 0:001 m and a0 ¼ 0:01 m, b0 ¼ 0:01 m, respectively. The prescribed order of accuracy is reached for
the schemes up to fourth order, as for the steady test case. Difficulties are observed for the fifth-order scheme
even if it gives the smallest errors. This behaviour might be due to the non-linearities appearing in the equa-
tions; it does not seem to be related to the precision of the machine: tests using a quad-precision version of the
code has been performed. We remark that we have also performed a convergence rates study, not reported
here, for the model advection–reaction equation oq

ot þ k oq
ox ¼ bq, with constant k and b. The results for schemes

of second to fifth order of accuracy are quite consistent with those for the non-linear inhomogeneous system.

6. Summary and concluding remarks

We have proposed a framework for constructing arbitrary high-order numerical schemes for the solution of
the shallow water equations with source terms. A basic ingredient of the method is a high-order non-linear



Table 4
Convergence rates study for the unsteady and smooth case, b0 ¼ 0:001 m, a0 ¼ 0:001 m, Q0 ¼ 1 m2 s�1, T 0 ¼ 10 s, CFL ¼ 0:9

Method N L1 error L1 order L1 error L1 order

ADER 2 5 0.152E�03 0.335E�03
10 0.391E�04 1.96 0.803E�04 2.06
20 0.804E�05 2.28 0.180E�04 2.16
40 0.182E�05 2.15 0.403E�05 2.16
80 0.433E�06 2.07 0.951E�06 2.08

ADER 3 5 0.654E�04 0.126E�03
10 0.652E�05 3.33 0.150E�04 3.07
20 0.103E�05 2.66 0.210E�05 2.83
40 0.132E�06 2.96 0.269E�06 2.97
80 0.163E�07 3.02 0.333E�07 3.01

ADER 4 5 0.381E�04 0.842E�04
10 0.267E�05 3.84 0.561E�05 3.91
20 0.138E�06 4.27 0.306E�06 4.19
40 0.718E�08 4.27 0.203E�07 3.91
80 0.846E�09 3.09 0.207E�08 3.30

ADER 5 5 0.163E�04 0.377E�04
10 0.521E�06 4.97 0.118E�05 5.01
20 0.159E�07 5.04 0.333E�07 5.16
40 0.328E�08 2.28 0.463E�08 2.86
80 0.909E�09 1.85 0.113E�08 2.03
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reconstruction procedure based on the spatial cell averages. Here we have used the ENO method [13], instead
of the more popular WENO method [20]. The ENO technique has an important advantage in that the high-
order polynomial is known in the entire cell and its evaluation at all required integration points is straightfor-
ward. The WENO technique on the other hand has some disadvantages in the presence of source terms. The
second ingredient of the ADER approach is the solution of the derivative Riemann problem including source
terms, which as part of it, requires the use of the Cauchy–Kowalewski procedure, illustrated in the Appendix.

We have systematically assessed the methods presented. They satisfy the Z-property, that is, they produce
the exact stationary solution for an horizontal free surface elevation and vanishing velocities, as shown in
Fig. 2. For the steady case the schemes have been shown, empirically, to converge to the correct solution
and therefore, they satisfy the approximate C-property. Steady solutions are well reproduced both in the
smooth and in the discontinuous case, noting however, that in the case of steady discontinuous solutions, a
refinement of the mesh does not always give better numerical results around discontinuities, except for the for-
tuitous case when the discontinuity is aligned with the interface between two adjacent cells.

An important aspect of this paper is the high accuracy in space and time for hyperbolic systems with source
terms. Here we have implemented and tested schemes up to fifth order of accuracy in space and time and we
have paid a great deal of attention to the practical verification of the theoretical expected orders of accuracy of
the schemes. We have performed a study of the convergence rates of the schemes for tests with small amplitude
sinusoidal distributions, both for the steady and for the unsteady cases. For situations in which the unknown
functions exhibit large (of high order) derivatives we experienced some difficulties in achieving the expected
convergence rates. We believe that non-linear terms in the governing equations are an additional contributing
factor in explaining these difficulties. This combination of factors is likely to trigger and enhance the influence
of round off errors. We speculate that another contributing factor could be due to the ENO interpolation pro-
cedure. In fact, closely associated schemes [5] based on WENO, rather than ENO, reconstructions have been
shown to achieve the theoretically expected orders of accuracy.

We also note that results for the linear inhomogeneous model equations, not unreported here, are quite
consistent with those of the non-linear inhomogeneous system case, in terms of the behaviour of even- and
odd-order schemes and of the influence of large, high-order derivatives in the solution or in the bottom var-
iation function. It is also worth remarking, however, that for the linear model case the notionally second-order
scheme does not reach second order of accuracy, whereas for the non-linear system case the scheme achieves



Table 5
Convergence rates study for the unsteady and smooth case, b0 ¼ 0:01 m, a0 ¼ 0:01 m, Q0 ¼ 1 m2 s�1, T 0 ¼ 10 s, CFL ¼ 0:9

Method N L1 error L1 order L1 error L1 order

ADER 2 5 0.152E�02 0.333E�02
10 0.389E�03 1.96 0.795E�03 2.06
20 0.802E�04 2.27 0.180E�03 2.13
40 0.181E�04 2.14 0.405E�04 2.15
80 0.433E�05 2.06 0.946E�05 2.09

ADER 3 5 0.663E�03 0.125E�02
10 0.648E�04 3.35 0.149E�03 3.07
20 0.102E�04 2.66 0.210E�04 2.82
40 0.132E�05 2.95 0.271E�05 2.95
80 0.164E�06 3.00 0.341E�06 2.98

ADER 4 5 0.372E�03 0.825E�03
10 0.277E�04 3.74 0.586E�04 3.81
20 0.143E�05 4.27 0.311E�05 4.23
40 0.841E�07 4.09 0.215E�06 3.85
80 0.108E�07 2.95 0.223E�07 3.26

ADER 5 5 0.163E�03 0.374E�03
10 0.542E�05 4.91 0.125E�04 4.89
20 0.203E�06 4.73 0.463E�06 4.76
40 0.391E�07 2.37 0.630E�07 2.87
80 0.103E�07 1.91 0.153E�07 2.03
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second order of accuracy. For discontinuous solutions the numerical methods produce essentially non-oscil-
latory numerical results.

Finally, a remark regarding the justification of high-order methods, such as those of this paper, is due.
Obviously, for a given mesh, a solution computed with a high-order method will give a smaller error, but
the cost (measured in various ways) will be greater. So the crucial question is this: to attain a prescribed error
deemed acceptable, is it more efficient to use a low-order method on a fine mesh or a high-order method on a
coarse mesh? Recent studies of high-order ADER schemes show that higher-order schemes are more efficient,
when computing solutions with high accuracy (small errors). For the linear case studied in [7] the authors
report on a careful assessment of ADER schemes of up to 24th order of accuracy, as applied to acoustic prob-
lems in two space dimensions. The study shows that for computed solutions with a pre-assigned relatively
large error, it is unclear as to whether it is more efficient to use a low-order method on a fine mesh or a
high-order method on a coarse mesh. However, for computing a solutions with a small pre-assigned error
it is distinctly more efficient to use high-order methods, and by a huge margin. Similar conclusions can be
drawn for the non-linear case. In [5] the authors report on results for the three-dimensional non-linear Euler
equations on unstructured meshes.
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Appendix. Illustration of the Cauchy–Kowalewski procedure

System (2) can be rewritten in non-conservative form as follows:
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oH
ot þ

oQ
ox ¼ 0;

oQ
ot þ gD� u2ð Þ oH

ox þ 2u oQ
ox ¼ �u2 ob

ox ;

(
ð17Þ
which can be written in vectorial form as follows:
otUþ AoxU ¼ S; ð18Þ

where A is the matrix:
A ¼
0 1

gD� u2 2u

� �
ð19Þ
and the source term S reads
S ¼
0

�u2 ob
ox

" #
: ð20Þ
To obtain the time derivatives for the evaluation of the numerical flux according to (8)–(11) it is necessary to
write the time derivatives as functions of the spatial derivatives, using the Cauchy–Kowalewski procedure. As
away we illustrate the method we give here the expressions for the time derivatives up to third order:
oH
ot ¼ �

oQ
ox ;

oQ
ot ¼ �ðgD� u2Þ oH

ox � 2u oQ
ox � u2 ob

ox ;

(
ð21Þ

o2H
ot2 ¼ u2 o2b

ox2 þ ðgD� u2Þ o2H
ox2 þ 2u o2Q

ox2 ;

o2Q
ot2 ¼ ðgDþ 3u2Þ o2Q

ox2 þ 2u3 o2b
ox2 þ 2u gD� u2ð Þ o2H

ox2 ;

(
ð22Þ

o3H
ot3 ¼ �2u3 o3b

ox3 � 2u gD� u2ð Þ o3H
ox3 � gDþ 3u2ð Þ o3Q

ox3 ;

o3Q
ot3 ¼ �4u gDþ u2ð Þ o3Q

ox3 � u2 gDþ 3u2ð Þ o3b
ox3 � gDþ 3u2ð Þ gD� u2ð Þ o3H

ox3 :

(
ð23Þ
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[1] A. Bermúdez, M.E. Vázquez-Cendón, Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids 23
(1994) 1049–1071.

[2] R. Bernetti, V.A. Titarev, E.F. Toro, Exact solution of the Riemann problem for the shallow water equations with discontinuous
bottom geometry, Technical Report NI06020-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge,
UK, 17 May, 2004. J. Comput. Phys., accepted for publication.

[3] N. Crnjaric-Zic, S. Vukovic, L. Sopta, Balanced finite volume WENO and central WENO schemes for the shallow water and the
open-channel flow equations, J. Comput. Phys. 200 (2) (2004) 512–548.

[4] M. Dumbser, Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains, PhD thesis, Institut
für Aero-und Gasdynamik, Universität Stuttgart, Germany, 2005.
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